Overview
- Peptide (C)EDEVAAKEGNSPGPQ, corresponding to amino acid residues 1943-1956 of rat NaV1.8 (Accession Q63554). Intracellular, C-terminus.
- Rat dorsal root ganglia (DRG).
- Multiplex staining of NaV1.8 and Synaptophysin in rat DRGImmunohistochemical staining of rat DRG frozen section using Anti-NaV1.8 (SCN10A)-ATTO Fluor-594 Antibody (#ASC-016-AR) and Anti-Synaptophysin Antibody (#ANR-013). A. NaV1.8 staining (red). B. Synaptophysin staining (green). C. Merged image demonstrates a partial overlap in the distribution of NaV1.8 and Synaptophysin within the DRGs. DAPI is used as the counterstain (blue).
Voltage-gated Na+ channels (NaV) are essential for the generation of action potentials and for cell excitability1. NaV channels are activated in response to depolarization and selectively allow flow of Na+ ions. To date, nine NaV α subunits have been cloned and named NaV1.1-1.92,3. The NaV channels are classified into two groups according to their sensitivity to tetrodotoxin (TTX): TTX-sensitive and TTX-resistant channels4,5. Their expression is developmentally regulated and tissue specific.
Two TTX-resistant NaV channels are expressed in dorsal root ganglion (DRG) neurons, NaV1.8 and NaV1.9. The NaV1.8 channel (also called SCN10A, SNS and PN3) is mainly expressed in small-diameter DRG neurons4,6. TTX-resistant channels have been suggested to play an important role in nociceptive transmission.
Recently, the involvement of NaV1.8 in multiple sclerosis (MS) was suggested due to up-regulation of both mRNA and protein in Purkinje cells of MS patients and also in animal models6.