Overview
- Peptide (C)HVSRHFKVWSLRRD, corresponding to amino acid residues 363-376 of rat NMDAR3B (Accession Q8VHN2). Extracellular, N-terminus.
- Western blot analysis of mouse (lanes 1 and 3) and rat (lanes 2 and 4) brain lysates:1,2. Anti-NMDAR3B (GRIN3B) (extracellular) Antibody (#AGC-031), (1:200).
3,4. Anti-NMDAR3B (GRIN3B) (extracellular) Antibody, preincubated with NMDAR3B/GRIN3B (extracellular) Blocking Peptide (#BLP-GC031).
- Expression of NR3B in mouse neocortexImmunohistochemical staining of immersion-fixed, free floating mouse brain frozen sections using Anti-NMDAR3B (GRIN3B) (extracellular) Antibody (#AGC-031), (1:100). NR3B expression (red) is most striking in pyramidal neurons (arrows). DAPI staining of cell nuclei (blue) was used as a general cellular marker.
- Multiplex staining of NMDA3B and NMDAR1 in mouse cortex.Immunohistochemical staining of perfusion-fixed frozen mouse brain sections with Anti-NMDAR3B (GRIN3B) (extracellular) Antibody (#AGC-031), (1:400), followed goat anti-rabbit-AlexaFluor-488 and Guinea pig Anti-NMDAR1 (GluN1) (extracellular) Antibody (#AGC-001-GP), (1:1200), followed by goat anti-donkey-biotin and streptavidin-Cy3. A. NMDA3A immunoreactivity (green) appears in pyramidal cells of layer 5. B. NMDAR1 immunoreactivity (red) appears in several cell types in the same region. C. Merge of the two images reveals several cells expressing both NMDA3B and NMDAR1 (arrows point at examples). Cell nuclei are stained with DAPI (blue).
- Dingledine, R. et al. (1999) Pharmacol. Rev. 51, 7.
- Mayer, M.L. and Armstrong, N. (2004) Annu. Rev. Physiol. 66, 161.
- Prybylowski, K. and Wenthold, R.J. (2004) J. Biol. Chem. 279, 9673.
- Mayer, M.L. (2006) Nature 440, 456.
The NMDA receptors (NMDARs) are members of the glutamate receptor family of ion channels that also include the AMPA and Kainate receptors.
The NMDA receptors are encoded by seven genes: one NMDAR1 (or NR1) subunit, four NR2 (NR2A-NR2D) and two NR3 (NR3A-NR3B) subunits. The functional NMDA receptor appears to be a heterotetramer composed of two NMDAR1 and two NMDAR2 subunits. Whereas the NMDAR2 subunits that assemble with the NMDAR1 subunit can be either of the same kind (i.e. two NMDAR2A subunits) or different (one NMDAR2A with one NMDAR2B). NMDAR3 subunits can substitute the NMDAR2 subunits in their complex with the NMDAR1 subunit.
The NMDAR is unique among ligand-gated ion channels in that it requires the simultaneous binding of two obligatory agonists: glycine and glutamate that bind to the NMDAR1 and NMDAR2 binding sites respectively. Another unique characteristic of the NMDA receptors is their dependence on membrane potential. At resting membrane potentials the channels are blocked by extracellular Mg2+. Neuronal depolarization relieves the Mg2+ blockage and allows ion influx into the cells. NMDA receptors are strongly selective for Ca2+ influx differing from the other glutamate receptor ion channels that are non-selective cation channels.
Ca2+ entry through the NMDAR regulates numerous downstream signaling pathways including long term potentiation (a molecular model of memory) and synaptic plasticity that may underlie learning. In addition, the NMDA receptors have been implicated in a variety of neurological disorders including epilepsy, ischemic brain damage, Parkinson’s and Alzheimer’s disease.
The expression and function of NMDA receptors are modulated by a variety of factors including receptor trafficking to the synapses and internalization as well as phosphorylation and interaction with other intracellular proteins.
Application key:
Species reactivity key:
Anti-NMDAR3B (GRIN3B) (extracellular) Antibody (#AGC-031) is a highly specific antibody directed against an epitope of the rat NMDA receptor 3B (NR3B). The antibody can be used in western blot and immunohistochemistry applications. The antibody recognizes an extracellular epitope and can potentially be used for detecting the receptor in living cells. It has been designed to recognize NR3B from rat, mouse and human samples.